
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #7

HID and Error Handling

Lecture #7

Part I: HID

• Games are interactive computer simulation
– Management of user inputs is central

• Human interface devices (HID) for games
– keyboard

– mouse

– joystick

– joypad

– track ball

– multi-touch pad

– remote controller

– webcam

– steering wheel, pedal, force plate, electric guitar

– and much more

4

Introduction

• HID provides input to the game software

• Some HIDs allow to give feedback to the

user

– light, force feedback, vibration, sound

• Game engine reads and writes HID inputs

and outputs

– depends on the specific design, OS, and device

5

Introduction

• Two techniques

– Polling

– Interruption

6

Interfacing with HID

• Polling

– Device state is checked by polling the hardware
periodically

• usually once per game loop iteration (or defined by
the input manager update frequency)

• explicit call to the reading of device state

• by reading hardware registers, memory I/O port or
higher software interface (driver)

– Example: Microsoft’s XInput API for Xbox 360
game pad for console and PC

• call to XInputGetState() function at each update

• returns a XINPUT_STATE containing joy pad
information (buttons pushed, stick position etc.)

7

Interfacing with HID

• Interruption

– Update game logic only when changes occur

– No need to send a continuous stream of data
when device is not pressed / released / moved

– Communication with the game engine done via
hardware interruption

• electronic signal that suspends the game execution
and calls an interrupt service routine (ISR)

• ISR reads the HID state, updates its state in game
engine and resumes the execution

• game engine takes action(s) immediately or picks up
the new state next time it is convenient to do so

8

Interfacing with HID

• Keyboard and mouse are the main devices

for PC-based games

• Interfacing concepts for keyboard and

mouse can be generalized to any HID

9

Interfacing with HID

• Not particularly well suited for game control

– set of buttons without direct spatial relationship

with the virtual world

• On PC platform Windows

– defined in header <winuser.h>

• but include <windows.h>

– [add library user32.dll in path]

10

The keyboard

• To get the state of a specific key

– if the key is a letter or digit (a => z, 0 => 9),

keycode can use its ASCII value (0x41 => 0x5A,

0x30 => 0x39)

– otherwise keycode is a virtual-key value (one

out of the 256 entries, defined in winuser.h)

• e.g. VK_BACK for backspace key, VK_TAB for

tabulation, VK_RETURN, VK_SHIFT, VK_LEFT, ...

11

Polling the keyboard

short GetAsyncKeyState(int keycode);

• To get the state of a specific key

– return value encodes the state of the key

• Most significant bit set if key down

• Least significant bit set if key pressed after previous

call to GetAsyncKeyState

• Array of 256 bool usually used locally to

maintain keyboard state

12

Polling the keyboard

short GetAsyncKeyState(int keycode);

• To get the state of a specific key

– same input as GetAsyncKeyState

– return value encodes the state of the key

• Most significant bit set if key down, otherwise up

– reports the state of the keyboard at the time of

the generation of the keyboard-input message

• GetKeyState always used in response to a message

13

Polling the keyboard

short GetKeyState(int keycode);

• GetAsyncKeyState vs. GetKeyState

– At time t, the user Alt+LeftClick mouse

– At time t+dt, the program responds to the click

and checks the board state

– Assuming the user released the Alt key in

between

• using GetAsyncKeyState will return that Alt is not

down => at this very calling instant t+dt

• using GetKeyState will return that Alt is down => at

the time t the user clicked the mouse (event created)

14

Polling the keyboard

• Then each key requires a specific call

– time consuming when testing a lot of keys

• The whole keyboard state can be queried

– lpKeyState is a 256-byte array that receives the

status for each virtual key

– return value is true if call succeed

– same behavior as GetKeyState on each key

15

Polling the keyboard

bool GetKeyboardState(PBYTE lpKeyState);

• To call a function only when key pressed

• On Windows PC platform, keyboard and

mouse tracking can be done through the

Windows Procedure of Win32 API

– Notification/Message mechanism

– Available on window-based applications via the

WndProc function

16

The keyboard interruption

17

The keyboard interruption

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

 // ...

 switch (msg) {

 case WM_COMMAND:

 // ...

 break;

 case WM_DESTROY:

 PostQuitMessage(0);

 break;

 // ... other cases ...

 default:

 return DefWindowProc(hwnd, msg, wParam, lParam);

 }

 return 0;

}

• Messages are send when key state changes

• Examples:

– WM_KEYDOWN

– WM_KEYUP

– and more (see msdn.microsoft.com)

• The wParam then contains the virtual-key

code

18

The keyboard interruption

• Example

19

The keyboard interruption

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

 switch (msg) {

 case WM_KEYDOWN: // do something when key pressed

 switch (wParam) {

 case VK_LEFT: // process left arrow

 case VK_RIGHT: // process right arrow

 case VK_F2: // process F2 key

 case 0x41: // process A key

 default: break;

 }

 default:

 return DefWindowProc(hwnd, msg, wParam, lParam);

 }

 return 0;

}

• Polling is often used during a keyboard

interruption to combine key/mouse events

• Examples

– Shift+LeftArrow, in a game to strafe left

– Ctrl+Alt+Delete, task manager

– Alt+F4, to exit

– Alt+Enter, to full screen

– etc.

20

The keyboard interruption

• To read mouse state (position)

• LPPOINT is a pointer to a POINT structure

– including two long int: x and y

• return nonzero if successful, zero otherwise

• Cursor position is specified in screen pixel
coordinates

– x (resp. y) from 0 to hor. (resp. vert.) max resolution

– Screen coordinates can be converted to/from
window coordinates by ScreenToClient /
ClientToScreen functions

21

Polling the mouse

bool GetCursorPos(LPPOINT point);

• Example

22

Polling the mouse

#include <windows.h> // -> includes <winuser.h>

POINT cursorPos;

GetCursorPos(&cursorPos);

cout << “Cursor position: ”;

cout << “(” << cursorPos.x << “ ” << cursorPos.y << “)” ;

• To call a function when mouse is moved or

button pressed (also considered as virtual

keys)

• Same mechanism as keyboard: through

Windows Procedure messages

– WM_LBUTTONDBLCLK

– WM_LBUTTONDOWN

– WM_MOUSEHWHEEL

– WM_MOUSEMOVE

– and more (see msdn.microsoft.com)

23

The mouse interruption

• Each mouse related message has its own

wParam and lParam contents

– WM_MOUSEMOVE (and others)

• horizontal and vertical position in lParam

• buttons states in wParam

– WM_MOUSEWHEEL

• same plus the wheel-delta value in wParam

24

The mouse interruption

• Example

25

The mouse interruption

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

 switch (msg) {

 case WM_MOUSEMOVE: // do something when moving the mouse

 int xPos = GET_X_LPARAM(lParam);

 int yPos = GET_Y_LPARAM(lParam);

 convertToGameWorldLocation(xPos,yPos);

 if (wParam & MK_RBUTTON) // wParam contains buttons states

 AttackAt(xPos,yPos); // attack while right clicking

 else if (wParam & MK_LBUTTON)

 MoveTo(xPos,yPos); // move while left clicking

 else

 LookAt(xPos,yPos); // look at otherwise

 break;

 default:

 return DefWindowProc(hwnd, msg, wParam, lParam);

 }

 return 0;

}

• Usually the input manager is in charge of

– calling the entities that are willing to take actions

regarding input events

– providing polling functions to them

• These entities register themselves to the

game engine

• The Windows notifications from WndProc

are forwarded to the input manager

– which selects the user input related messages

– and notifies the entities

26

Input manager in game engine

• More and more HIDs are available

• How to enable the use of any HID to control
a game without any impact on the engine?

• Hardware abstraction specifies a virtual
controller

– any HID that conforms to the abstract profile of
the controller can then be used

– write a pure abstract class for generic controller
handler

– at run time only the selected HID controller is
created

27

Hardware abstraction

• Usually game engine HID system provides

– data zones validity and filtering

• due to an analog noisy signal, the input may have to

be rounded in order to stay in the min/max limits and

to have a steady rest configuration

• due to signal noise ratio, the input is filtered

(smoothed) using a low pass filter

– event detection

• interruption routines compatible with OS

28

HID system functionalities

• Usually game engine HID system provides

– detection of chords and sequences
• when a specific group of inputs is fired or when a

sequence of inputs is realized, the system can trigger a
special action

• examples

– CTRL-ALT-DELETE in Windows to start Task Manager

– button sequence A-B-B-A-A-B-R-L-A in Street Fighter Turbo
Speed 2 to activate a super hyper mega kick

– management of multiple HIDs for multiple players
• to route devices to the right player in game

• involved a bidirectional player to controller mapping

• needs also to take care of HID disconnection (unplugged,
out of battery etc.) in the gameplay

29

HID system functionalities

• Usually game engine HID system provides

– multiplatform HID support
• by conditional compilation wherever platform specific

functions are used

• or by adding an abstraction layer

– controller input re-mapping
• action mapping table is used to translate raw inputs

into logical game actions

• to enable the re-assignment of the controller’s
functions

• examples: up/down direction in mouse and joystick
(for flight games), OPQA vs. arrow pad vs. WASD

30

HID system functionalities

• Usually game engine HID system provides

– context-sensitive inputs
• when the same input triggers different actions according to the

context

• can be implemented with simple state machine to a get priority
focus

• examples
– the ‘E’ use button in adventure games where it means talk to if NPC

selected, and pick up if object in sight, and open if door in front etc.

– HID to control character or vehicle or camera or 2D menu navigation

– the ability to temporarily disable inputs
• using disable mask on inputs or interpreting in the game logic

• examples
– disabling user inputs during in-game cinematic

– disable camera moving in constrained environment

31

HID system functionalities

Lecture #7

Part II: Error Handling

• An error condition (or just “error”) is a

condition occurring during runtime, that is

not executed by the normal flow

– alternative way to recover safely from an error

– not the same as a bug

• Error conditions in a function might be

– Prevented (ensure always valid calling)

– Handled in the function

– Left to the user of the function to deal with it

33

Dealing with errors

• Different approaches

– to terminate the program

– to return error codes or error indicators

– to call an error handler function

– to throw exceptions

34

Error handling

• An assertion checks an expression

– if true nothing happens

– if false a message is printed and the program is

stopped

• Used as “land-mine”

– as soon as a modification of the code violates

the assertion, an error will be shown

– usually only during development process

• often used to check pointer validity (!= NULL)

35

Assertions

• Implemented with #define macro

36

Assertions

#if ASSERTIONS_ENABLED

 #define ASSERT(expression) \

 if (expression) { } \

 else reportAssertionFailure(#expression,__FILE__,__LINE__); \

#else

 #define ASSERT(expression)

#endif

• Default C/C++ library

– expression is written, then abort is called,

terminating the program

– asserts are ignored if NDEBUG is defined

• designed to capture programming errors not user or

running errors

37

Assertions

#include <assert.h>

int * ptrValue;

// ...

assert(ptrValue != NULL);

Assertion failed: ptrValue != NULL, file main.cpp, line 5

38

Assertions

main()

error

terminate

• Returning fail/pass code from the function in

which the problem is first detected

– boolean value

– legal but “impossible” value of returned type or out

of range (ex: NULL, -1, “”)

– code (ex: 0 = ok, 1 = error 1, 2 = error 2 ...), usually

in an enum

• Error indicator as reference parameter (usually

last parameter, also called flag)

• Calling function intercept and interpret the error

– solved directly or passed to the calling function

39

Error codes and indicators

40

Error codes and indicators

main()

error

• A function that is especially designed to deal

with errors

– chooses to stop program or resumes execution

• Might need access to many information to

make the decisions

– central organ of the code

41

Error handler function

42

Error handler function

main()

error
error

handler

call handler

resume

terminate

• Throwing exception allows a function to

communicate an error to the rest of the code

without information on the handling function

– the rest of the code in the throwing function is

not evaluated

• Creation of an exception object containing

the information about the error

• The function that explicitly catches that

exception deals with the error

– try-catch block

43

Exceptions

44

Exceptions

main()

try-catch

error

throw

terminate

resume

• Advantages

– Less messy code, easier to maintain

– Flexibility (different handling for different errors)

– Better error information handling

– Error reporting in constructors (error codes are not
possible)

– No large error code table required, easier debugging

– Exceptions are a uniform way of indicating errors in C++

• But very costly

– memory for the unwinding process information

– time (2-3x) to unwind the stack

– implementation of try-catch ‘everywhere’

45

Exceptions

• Syntax for catching an error

• Syntax for throwing an error

46

Exception handling in C++

try {

 // code here that could throw one or more exceptions

} catch (exceptions_parameter) {

 // deal with the error(s) here

}

throw errorException ;

47

Standard exception hierarchy
exception

logic_error runtime_error bad_alloc

bad_cast

bad_typeid

bad_exception

ios_base::failure

range_error

overflow_error

underflow_error

length_error

domain_error

out_of_range

invalid_argument

in <exception> in <stdexcept>

• Catching example from constructor

48

Exception handling in C++

try {

 Player* player = new Player();

} catch (std::bad_alloc& e) {

 // memory allocation didn’t succeed!

} catch (std::out_of_range& e) {

 // some array was accessed out of range!

} catch (std::runtime_error& e) {

 // range_error, overflow_error or underflow_error detected!

 // use dynamic_cast to determine exact error type

} catch (...) {

 // some other indeterminate exceptions occurred!

}

• Throwing examples

49

Exception handling in C++

Item* Inventory::getItem(int i) {

 if (i < 0 || i > amount_)

 throw std::range_error("Inventory:index out of range");

 // will be catched with range_error exception

 return items_[i];

}

Item* Inventory::getItem(int i) {

 if (i < 0 || i > amount_)

 throw -1;

 // will be catched with “catch (int e)”

 return items_[i];

}

• Re-throwing an exception to the calling function

• This will throw the same runtime error

exception again

– Useful for resolving local problems and passing the

exception on to caller for further necessary actions

50

Exception handling in C++

try {

 executeAExceptionFunction();

} catch (std::runtime_error& e) {

 doTheMostToSolve();

 throw;

}

• We can limit the exception type of a function

– directly or indirectly thrown

– by appending a throw suffix to the declaration

• Permission to throw exceptions can also be

specified with the throw specification

51

Exception specifications

float FunctionOne (char parameter) throw (int);

int FunctionTwo (int parameter) throw (std::out_of_range);

int F1 (int param) throw (); // no exception allowed

int F2 (int param); // all exceptions allowed

• The exception is directly thrown to the

calling function if no try-catch

• But exceptions cannot be ignored!

52

Exception handling in C++

void TestReady (Player& p) throw (std::runtime_error) {

 if (!PlayerReady(p))

 throw std::runtime_error("Player should be ready!");

}

void Run() throw (std::runtime_error) {//enable to throw directly

 Player p;

 TestReady(p); // does not required try-catch, throws to caller

 SpeakWithPlayer(p);

}

• What if an exception is never caught?

– Unwinding until the main function

– If still no catch, call to std::terminate()

– Possibility to change the terminate function

53

Exception handling in C++

void myTerminate() {

 std::cout << "Unexpected exception not caught.\n";

}

int main()

{

 std::set_terminate(myTerminate);

 throw "error";

 return 0;

}

• You can create your own exception class

• Most standard exception classes have a

string member to use as a message

– As parameter to the constructor

– Accessible through the what() member function

54

Custom exception class

class MyException {...}

class MyException : public std::exception {...}

throw MyException("That’s not acceptable!");

try {...} catch (MyException& e) {cout << e.what();}

• The following can throw in C++

– “throw” throws

– “new” may throw std::bad_alloc if it cannot

allocate the requested memory

– A function that

1. calls a function that throws

2. does not catch an exception

– Functions written by others may throw

• See their doc’s.

55

What can throw?

• The following cannot throw

– Default operations on primitive types (including

operator[])

– The default version of “delete”

– C++ Standard I/O libraries (by default)

56

What does not throw?

• Identify all statements where an exception can
appear

– solve it or throw it up if one caller can solve it

• Identify all problems that can occur in presence
of an exception

– write handler to be able to
• resume the program

• re-do operation differently

• allow a caller to solve the problem

• terminate the program in last case

– indicate in header that an exception might be
thrown

57

Guidelines

• Ideally, leave your object in the state it was
when the function was entered

– catch exceptions and restore the initial state

• Do not catch exceptions if you do not know how
to (partially) handle them

• If you cannot ignore propagated exceptions,
use a catch-all (...) clause

• Do not throw strings as all exceptions will have
the same type string

• Keep your objects destructible

– do not leave dangling pointer in your objects

58

Guidelines

End of lecture #7

Next lecture

Template and Serialization

