Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #/

HID and Error Handling

Lecture #/

Part |: HID

Introduction

« Games are interactive computer simulation
— Management of user inputs is central

 Human interface devices (HID) for games
— keyboard
— mouse
— Joystick
— Joypad
— track ball
— multi-touch pad
— remote controller
— webcam
— steering wheel, pedal, force plate, electric guitar
— and much more

% Universiteit Utrecht

Introduction

« HID provides input to the game software

 Some HIDs allow to give feedback to the
user
— light, force feedback, vibration, sound

« Game engine reads and writes HID inputs
and outputs
— depends on the specific design, OS, and device

Interfacing with HID

* Two techniques
— Polling
— Interruption

@

W

§

AN

Interfacing with HID

* Polling

— Device state Is checked by polling the hardware
periodically

 usually once per game loop iteration (or defined by
the input manager update frequency)

« explicit call to the reading of device state

* by reading hardware registers, memory I/O port or
higher software interface (driver)

— Example: Microsoft's XInput API for Xbox 360
game pad for console and PC

« call to XInputGetState() function at each update

 returns a XINPUT _STATE containing joy pad
Information (buttons pushed, stick position etc.)

Wi,
bJ é Universiteit Utrecht

Interfacing with HID

* Interruption
— Update game logic only when changes occur

— NoO need to send a continuous stream of data
when device Is not pressed / released / moved

— Communication with the game engine done via
hardware interruption

« electronic signal that suspends the game execution
and calls an interrupt service routine (ISR)

* ISR reads the HID state, updates its state in game
engine and resumes the execution

« game engine takes action(s) immediately or picks up
the new state next time it is convenient to do so

§% Universiteit Utrecht

Interfacing with HID

« Keyboard and mouse are the main devices
for PC-based games

* Interfacing concepts for keyboard and
mouse can be generalized to any HID

The keyboard

* Not particularly well suited for game control

— set of buttons without direct spatial relationship
with the virtual world

* On PC platform Windows

— defined in header <winuser.h>
* put Include <windows.h>

— [add library user32.dll in pathj

10

Polling the keyboard

* To get the state of a specific key

short GetAsyncKeyState(int keycode) ;

— If the key Is a letter or digit (a =>z, 0 => 9),

keycode can use its ASCII value (0x41 => Ox5A,

0x30 => 0x39)

— otherwise keycode Is a virtual-key value (one
out of the 256 entries, defined In winuser.h)

« e.g. VK_BACK for backspace key, VK_TAB for
tabulation, VK_RETURN, VK_SHIFT, VK_LEFT, ...

% Universiteit Utrecht

11

Polling the keyboard

* To get the state of a specific key

short GetAsyncKeyState (int keycode);

— return value encodes the state of the key
» Most significant bit set if key down

 Least significant bit set if key pressed after previous
call to GetAsyncKeyState

« Array of 256 bool usually used locally to
maintain keyboard state

",
N

: Universiteit Utrecht 12

N
L

Polling the keyboard

* To get the state of a specific key

short GetKeyState(int keycode) ;

— same Input as GetAsyncKeyState
— return value encodes the state of the key
* Most significant bit set if key down, otherwise up

— reports the state of the keyboard at the time of
the generation of the keyboard-input message

» GetKeyState always used in response to a message

%% Universiteit Utrecht 13

Polling the keyboard

* GetAsyncKeyState vs. GetKeyState
— At time t, the user Alt+LeftClick mouse

— At time t+dt, the program responds to the click
and checks the board state

— Assuming the user released the Alt key In
between

 using GetAsyncKeyState will return that Alt is not
down => at this very calling instant t+dt

 using GetKeyState will return that Alt is down => at
the time t the user clicked the mouse (event created)

§ g% Universiteit Utrecht e
U

Polling the keyboard

* Then each key requires a specific call
— time consuming when testing a lot of keys

* The whole keyboard state can be queried

bool GetKeyboardState (PBYTE lpKeyState)

— IpKeyState is a 256-byte array that receives the
status for each virtual key

— return value is true If call succeed
— same behavior as GetKeyState on each key

%;% Universiteit Utrecht 15

The keyboard interruption

* To call a function only when key pressed

* On Windows PC platform, keyboard and

mouse tracking can be done through the
Windows Procedure of Win32 API

— Notification/Message mechanism

— Avallable on window-based applications via the
WndProc function

; niversiteit Utrecht 16
N

The keyboard interruption

LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
//
(msg) {
WM COMMAND:
//
WM DESTROY:
PostQuitMessage (0) ;

// ... other cases

DefWindowProc (hwnd, msg, wParam, lParam);

Wi
% b f‘-;; Universiteit Utrecht

NS

The keyboard interruption

 Messages are send when key state changes

 Examples:
- WM_KEYDOWN
- WM_KEYUP
— and more (see msdn.microsoft.com)

 The wParam then contains the virtual-key
code

: Universiteit Utrecht 18

The keyboard interruption

« Example

LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
(msg) {
WM KEYDOWN: // do something when key pressed
(wParam) {
VK LEFT: // process left arrow
VK RIGHT: // process right arrow
VK F2: // process F2 key
Ox41: // process A key

.
4

DefWindowProc (hwnd, msg, wParam, lParam);

RN

3= bl = Universiteit Utrecht

NS

The keyboard interruption

* Polling Is often used during a keyboard
Interruption to combine key/mouse events

« Examples
— Shift+LeftArrow, in a game to strafe left
— Ctrl+Alt+Delete, task manager
— Alt+F4, to exit
— Alt+Enter, to full screen
— etc.

20

£

W
v/ﬂ :
N

5
c
-y

g,
N

£

Polling the mouse

To read mouse state (position)

bool GetCursorPos (LPPOINT point) ;

LPPOINT is a pointer to a POINT structure
— Including two long int: x and y

return nonzero If successful, zero otherwise

Cursor position is specified in screen pixel
coordinates

— X (resp. y) from O to hor. (resp. vert.) max resolution

— Screen coordinates can be converted to/from
window coordinates by ScreenToClient /
ClientToScreen functions

Universiteit Utrecht 21

s

N
L

S

\\

Polling the mouse

Example

POINT cursorPos;
GetCursorPos (&cursorPos) ;
cout << “Cursor position: ”;

cout << “(” << cursorPos.x <<

A\

#include <windows.h> // -> includes <winuser.h>

” << cursorPos.y << “)"

.
14

Universiteit Utrecht

The mouse interruption

* To call a function when mouse is moved or
button pressed (also considered as virtual
keys)

« Same mechanism as keyboard: through
Windows Procedure messages
—WM_LBUTTONDBLCLK
—WM_LBUTTONDOWN
—WM_MOUSEHWHEEL
—WM_MOUSEMOVE
— and more (see msdn.microsoft.com)

%
3

W

A

e, . . s
N % Universiteit Utrecht

I

23

The mouse interruption

 Each mouse related message has its own
wParam and IParam contents

- WM _MOUSEMOVE (and others)

 horizontal and vertical position in [Param
* buttons states in wParam

- WM MOUSEWHEEL
« same plus the wheel-delta value in wParam

24

The mouse interruption

« Example

LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
(msg) {
WM MOUSEMOVE: // do something when moving the mouse

int xPos = GET X LPARAM (lParam);

int yPos = GET Y LPARAM (lParam);

convertToGameWorldLocation (xPos, yPos) ;

(wParam & MK RBUTTON) // wParam contains buttons states

AttackAt (xPos,yPos); // attack while right clicking
(wParam & MK LBUTTON)
MoveTo (xPos,yPos); // move while left clicking

LookAt (xPos,yPos); // look at otherwise

DefWindowProc (hwnd, msg, wParam, lParam);

—

=
@?

\\

N

—

Universiteit Utrecht

i

%?

Input manager in game engine

« Usually the input manager is in charge of

— calling the entities that are willing to take actions
regarding input events

— providing polling functions to them

* These entities reqister themselves to the
game engine

* The Windows notifications from WndProc
are forwarded to the input manager

— which selects the user input related messages

— and notifies the entities

SN

K/

Universiteit Utrecht 26

N

Hardware abstraction

e More and more HIDs are available

 How to enable the use of any HID to control
a game without any impact on the engine?

« Hardware abstraction specifies a virtual
controller

—any HID that conforms to the abstract profile of
the controller can then be used

— write a pure abstract class for generic controller
handler

— at run time only the selected HID controller is
created

§ g% Universiteit Utrecht 27

HID system functionalities

« Usually game engine HID system provides

— data zones validity and filtering

 due to an analog noisy signal, the input may have to
be rounded in order to stay in the min/max limits and
to have a steady rest configuration

 due to signal noise ratio, the input is filtered
(smoothed) using a low pass filter

— event detection
* Interruption routines compatible with OS

A

% N ;-“"-E Universiteit Utrecht

NS

28

HID system functionalities

Usually game engine HID system provides

— detection of chords and sequences

« when a specific group of inputs is fired or when a

sequence of inputs is realized, the system can trigger a
special action

e examples

— CTRL-ALT-DELETE in Windows to start Task Manager

— button sequence A-B-B-A-A-B-R-L-A in Street Fighter Turbo
Speed 2 to activate a super hyper mega kick

— management of multiple HIDs for multiple players
* to route devices to the right player in game
* involved a bidirectional player to controller mapping

* needs also to take care of HID disconnection (unplugged,
out of battery etc.) in the gameplay

/ . . s
% Universiteit Utrecht

Ab*

N2

HID system functionalities

« Usually game engine HID system provides

— multiplatform HID support

* by conditional compilation wherever platform specific
functions are used

 or by adding an abstraction layer

— controller input re-mapping

 action mapping table is used to translate raw inputs
Into logical game actions

* to enable the re-assignment of the controller’s
functions

« examples: up/down direction in mouse and joystick
(for flight games), OPQA vs. arrow pad vs. WASD

RN
N

/|

Wi,
N

A

Universiteit Utrecht 30

L

HID system functionalities

« Usually game engine HID system provides
— context-sensitive inputs

« when the same input triggers different actions according to the
context

« can be implemented with simple state machine to a get priority
focus

« examples

— the ‘E’ use button in adventure games where it means talk to if NPC
selected, and pick up if object in sight, and open if door in front etc.

— HID to control character or vehicle or camera or 2D menu navigation

— the abllity to temporarily disable inputs

 using disable mask on inputs or interpreting in the game logic
« examples

— disabling user inputs during in-game cinematic
— disable camera moving in constrained environment

g% Universiteit Utrecht

31

Lecture #/

Part Il: Error Handling

Dealing with errors

* An error condition (or just “error”) is a
condition occurring during runtime, that is
not executed by the normal flow

— alternative way to recover safely from an error
— not the same as a bug

* Error conditions in a function might be

Prevented (ensure always valid calling)
Handled in the function

| eft to the user of the function to deal with it

Error handling

 Different approaches
— to terminate the program
— to return error codes or error indicators
—to call an error handler function
— to throw exceptions

% Universiteit Utrecht

34

Assertions

* An assertion checks an expression
— If true nothing happens

— If false a message Is printed and the program is
stopped

e Used as “land-mine”

— as soon as a modification of the code violates
the assertion, an error will be shown

— usually only during development process
« often used to check pointer validity (= NULL)

%% Universiteit Utrecht

35

Assertions

Implemented with #define macro

ASSERTIONS ENABLED
ASSERT (expression)
(expression) { }

reportAssertionFailure (#expression, FILE , LINE);

ASSERT (expression)

Universiteit Utrecht

Wiy,
W

Assertions

* Default C/C++ library

— expression is written, then abort Is called,
terminating the program
— asserts are ignored if NDEBUG is defined

 designed to capture programming errors not user or
running errors

#include <assert.h>

int * ptrValue;

/] ...
assert (ptrValue != NULL) ;
Assertion failed: ptrValue != NULL, file main.cpp, line 5

Universiteit Utrecht

Assertions

terminate

main ()

NI

% N % Universiteit Utrecht

NS

38

Error codes and indicators

» Returning fail/pass code from the function in
which the problem is first detected

— boolean value

— legal but “impossible” value of returned type or out
of range (ex: NULL, -1,)

—code (ex: 0=o0k, 1 =-error 1, 2 =error 2 ...), usually
INn an enum
* Error indicator as reference parameter (usually
last parameter, also called flag)

 Calling function intercept and interpret the error

— solved directly or passed to the calling function
NS

S

; bJ S Universiteit Utrecht 39

NS

Error codes and indicators

o~ main ()

)
W

7
NS
c
c
=

40

U

Error handler function

A function that is especially designed to deal
with errors

— chooses to stop program or resumes execution

* Might need access to many information to
make the decisions

— central organ of the code

: Universiteit Utrecht 41

Error handler function

terminate

A

L~ main ()

call handler

NI

% N % Universiteit Utrecht

NS

I
N

N\
“

Exceptions

Throwing exception allows a function to
communicate an error to the rest of the code
without information on the handling function

— the rest of the code in the throwing function is
not evaluated

Creation of an exception object containing
the information about the error

The function that explicitly catches that
exception deals with the error

— try-catch block

Universiteit Utrecht 43

Exceptions

terminate

{

L~ main()/

/ /

/

‘ try-catch

-
_~\\\\\ resume

N

NI

v

//f

throw
Y
eXrror o4

NI

% N % Universiteit Utrecht

NS

44

Exceptions

« Advantages
— Less messy code, easier to maintain
— Flexibility (different handling for different errors)
— Better error information handling

— Error reporting in constructors (error codes are not
possible)

— No large error code table required, easier debugging

— Exceptions are a uniform way of indicating errors in C++
« But very costly

— memory for the unwinding process information

— time (2-3x) to unwind the stack

— Implementation of try-catch ‘everywhere’

N ’ Universiteit Utrecht 45

=
i‘{c‘f‘

\\

g,

—

Exception handling in C++

« Syntax for catching an error

try
// code here that could throw one or more exceptions
} catch (exceptions parameter) {

// deal with the error(s) here

}

» Syntax for throwing an error

throw errorException ;

Universiteit Utrecht

i

‘v'?{/

Standard

exception

hierarchy

'

logic error

exception
bad alloc runtime error
bad_cast —>- range error
bad typeid — overflow error

bad exception

i0s base::failure

v

in <exception>

: Universiteit Utrecht

- underflow_error

—> length error

> domain_error

—> out of range

— invalid argument

in <stdexcept>

Exception handling in C++

« Catching example from constructor

try

Player* player = new Player();
} catch (std::bad allocé& e) {

// memory allocation didn’t succeed!

} catch (std::out of range& e) {

// some array was accessed out of range!
} catch (std::runtime erroré& e) {

// range error, overflow error or underflow error detected!

// use dynamic cast to determine exact error type

} catch (...) {

// some other indeterminate exceptions occurred!

Universiteit Utrecht

Exception handling in C++

Throwing examples

Ttem* Inventory::getltem(int i) {
(1 <0 || 1 > amount)
std::range error ("Inventory:index out of range");
// will be catched with range error exception

items [1];

Item* Inventory::getlItem(int 1) {
(1 <0 || 1 > amount)
-1;
// will be catched with “catch (int e)”

items [1];

Universiteit Utrecht

Exception handling in C++

* Re-throwing an exception to the calling function

try {
executeAExceptionFunction () ;

} catch (std::runtime erroré& e)
doTheMostToSolve () ;

throw;

 This will throw the same runtime error
exception again

— Useful for resolving local problems and passing the
exception on to caller for further necessary actions

’é

\

ﬁ

\l/

El% Universiteit Utrecht 50
N

AN

Exception specifications

« We can limit the exception type of a function
— directly or indirectly thrown
— by appending a throw suffix to the declaration

float FunctionOne

int FunctionTwo

(char parameter) throw (int);

(lnt parameter) throw (std::out of range);

* Permission to throw exceptions can also be
specified with the throw specification

int F1
int F2

(int param)

(int param);

throw (); // no exception allowed

// all exceptions allowed

NI

% N % Universiteit Utrecht

NS

51

Exception handling in C++

* The exception is directly thrown to the
calling function if no try-catch

. /\ But exceptions cannot be ignored!

TestReady (Playeré& p) (std::runtime error) {
(!PlayerReady (p))

std::runtime error ("Player should be ready!");

Player p;

SpeakWithPlayer (p) ;

Run () (std::runtime error) {//enable to throw directly

TestReady(p); // does not required try-catch, throws to caller

Wi
% b f‘-;; Universiteit Utrecht

NS

%
W

\L//
4
N

Exception handling in C++

What If an exception is never caught?

— Unwinding until the main function

— If still no catch, call to std::terminate()

— Possibility to change the terminate function

void myTerminate () {

std: :cout << "Unexpected exception not caught.\n";

}

int main ()

{
std::set terminate (myTerminate);
throw "error";

return 0;

}

Universiteit Utrecht

53

Custom exception class

* You can create your own exception class

class MyException {...}

class MyException : public std::exception {...}

* Most standard exception classes have a
string member to use as a message

— As parameter to the constructor

throw MyException ("That’s not acceptable!");

— Accessible through the what() member function

try {...} catch (MyException& e) {cout << e.what();}

NI

% N % Universiteit Utrecht 54

NS

What can throw?

* The following can throw in C++
— “throw” throws

— "new” may throw std::bad_alloc if it cannot
allocate the requested memory

— A function that
1. calls a function that throws
2. does not catch an exception

— Functions written by others may throw
» See their docC's.

% Universiteit Utrecht

55

What does not throw?

* The following cannot throw

— Default operations on primitive types (including
operator(])

— The default version of “delete”
— C++ Standard I/O libraries (by default)

%% Universiteit Utrecht

56

Guidelines

|dentify all statements where an exception can

appear
— solve it or throw It up If one caller can solve it

|dentify all problems that can occur in presence
of an exception

— write handler to be able to
* resume the program
* re-do operation differently
« allow a caller to solve the problem
 terminate the program in last case

— Indicate In header that an exception might be
thrown

@

W

\l/

El% Universiteit Utrecht 57
N

AN

§

Guidelines

* |deally, leave your object in the state it was
when the function was entered

— catch exceptions and restore the Initial state
* Do not catch exceptions if you do not know how

to (partially) handle t

* |f you cannot ignore
use a catch-all (...) c

* Do not throw strings
the same type string

nem
propagated exceptions,

ause
as all exceptions will have

« Keep your objects destructible
— do not leave dangling pointer in your objects

N
b
N

%
N

Universiteit Utrecht

N/

58

End of lecture #7

Next lecture
Template and Serialization

